Компьютерные Информационные Системы КИС Компьютерные
Информационные   
Системы
Волжский:  (8443)  27-53-12, 27-54-25, 27-57-18  ICQ: 622586532 Время работы:
900-1800
Волгоград:  (8442)  98-99-05, 98-57-18  ICQ: 616396128
Мобильные телефоны:  917-338-57-18, 917-338-99-05  Skype: jsccis

Анализ мультипликативной модели (Часть1)

Функции и современные методы управления

Кулакова Ольга
к.э.н., директор по науке и развитию ЗАО "КИС"

Анализ мультипликативной модели (Часть1)

В предыдущей статье мы рассмотрели один из методов прогнозирования, используемый для временных рядов - анализ аддитивной модели. Нашей задачей было представить пример расчета трендовых значений объема продаж и дать прогноз на будущие периоды на основе изложенных формул, не углубляясь в обоснование коэффициентов. Тем более, широкие возможности программного продукта Microsoft Excel позволяют расчет тренда сделать быстро, используя встроенные статистические функции.

Очевидно, чтобы выполнить прогноз, применяя стандартные технологии, нужна информация. И вот эта проблема является достаточно серьезной. Как правило, на современных предприятиях статистические ряды не накоплены. Информационная база начинается где-то в 90-х годах, а многое в тот период было неопределенным. Государственные статистические данные стали не актуальными, и достоверность данных далеко не безоговорочна.

Но функции планирования и прогнозирования являются основными видами деятельности любой организации, а стабилизационные процессы, протекающие в нашей стране за последний период, все же позволяют надеяться, что определенный тренд развития существует, и в будущем не будет нарушен. Определенные выводы можно будет делать и без полных статистических данных на маленькой выборке. Главное, правильно сформулировать условия решения задачи и выбрать метод, который был бы адекватен статистической природе изучаемых временных рядов.

Так, например, прежде чем определять метод, которым следует строить прогноз, аналитик должен решить для себя: обладает ли ряд, который он изучает, свойством сезонности.

Сезонность является объективным свойством временных рядов. Сезонная вариация - это повторение данных через небольшой промежуток времени, т.е. если форма кривой, которая описывает продажи товара, повторяет свои характерные очертания и тенденции, то о таком ряде можно говорить, что он обладает сезонностью. В этом случае, период прогнозирования должен быть достаточно большой, чтобы можно было наблюдать сезонные всплески и колебания продаж.

В некоторых временных рядах значение сезонной вариации - это определенная доля трендового значения, т.е. сезонная вариация увеличивается с возрастанием значений тренда. В таких случаях используется мультипликативная модель.

Для мультипликативной модели фактическое значение рассчитывается по формуле:


Расчет фактического значения в мультипликативной модели

Т - трендовое значение

S - сезонная вариация

Е - ошибка прогноза

Анализ мультипликативной модели рассмотрим на примере. В таблице указан объем продаж за последние одиннадцать кварталов. На основании этих данных дадим прогноз объема продаж на следующие два квартала.

Опираясь на предложенный алгоритм, на первом этапе исключим влияние сезонной вариации. Воспользуемся методом скользящей средней, заполним следующие столбцы таблицы.


Метод скользящей средней

Простое скользящее среднее (Simple Moving Avarage) - это средний арифметический показатель (объем продаж, объем производства, цена) за определенный период времени.

Одним важным достоинством скользящих средних является их способность давать сигналы о развороте тренда, подтверждать рост, спад.

Общая формула для вычисления SMA за n-ый период такая:


Простое скользящее среднее за период N

где n - период усреднения,

Р(i) - усредняемый объем (i - 1) период тому назад (i-е измерение или отсчет),

P(1) - объем продаж за последний период,

P(n) - самый старый по оси времени объем рассматриваемого нами временного промежутка.

1 год = 4 квартала. Поэтому найдем среднее значение объема продаж за 4 последовательных квартала. Для этого нужно сложить 4 последовательных числа из второго столбца, разделить на 4 (количество слагаемых) и результат запишем в третий столбец напротив третьего слагаемого: (63 74 79 120)/4=84 ; (74 79 120 67)/4=85; и т.д.

Если скользящая средняя вычисляется для нечетного числа сезонов, то результат не центрируется, в нашем примере число сезонов - восемь, поэтому сумму двух чисел из третьего столбца, разделим на 2 и запишем в четвертый столбец напротив верхнего из них: (84 85)/2=2=84,5.

Оценка сезонной вариации для аддитивной модели рассчитывается как разность объема продаж и центрированной скользящее средней. Для мультипликативных моделей - это отношение. Числа второго столбца делим на числа четвертого и результат округляем до трех цифр и запишем в пятый столбец: 79/84,5=0,935.

Следующим этапом необходимо исключить сезонную вариацию из фактических данных - провести десезонализация данных. Но это уже в следующем выпуске.

KИC - Компьютерные Информационные СистемыKИC - Компьютерные Информационные СистемыБюджетированиеБюджетированиеПлан производстваПлан производстваСебестоимостьСебестоимостьФинансовый анализФинансовый анализКИС:БюджетированиеКИС:Бюджетирование
© КИС - Компьютерные Информационные Системы Яндекс.Метрика Яндекс цитирования